Function reference
-
boxM() - Box's M-test
-
boxM_fast() - Box's M-test
-
boxM_permute() - Box's M-test
-
collapseClusters() - Collapse clusters based on jaccard index
-
combineResults() - Combine results into a single data.frame
-
corSubsetPairs() - Compute correlations between pairs of features
-
corrMatrix.test() - Test difference between two correlation matricies
-
countClusters() - Count clusters on each chromosome
-
createClusters() - Create cluster from list of hclust objects
-
createCorrelationMatrix() - Create correlation matrix
-
decorateDatadecorateDatadecorateData - Simulated data to show correlation clustering
-
delaneau.score() - Score impact of each sample on correlation sturucture
-
delaneau.test() - Test association between correlation sturucture and variable
-
.evalDiffCorr() - Internal .evalDiffCorr
-
epiclust-class - Class epiclust
-
epiclustDiscreteList-class - Class epiclustDiscreteList
-
epiclustDiscreteListContain-class - Class epiclustDiscreteListContain
-
epiclustList-class - Class epiclustList
-
evalDiffCorr() - Evaluate Differential Correlation
-
evaluateCorrDecay() - Evaluate the decay of correlation versus distance between features
-
extractCorrelationScores() - Extract sample-level correlation scores
-
filterClusters() - Extract subset of clusters
-
getClusterNames() - Get name of each cluster
-
getClusterRanges() - Get genome coordinates for each cluster
-
getFeaturesInCluster() - Get feature names in selected cluster
-
getFeaturesInClusterList() - Get feature names in selected cluster
-
getPeakDistances() - Compute distance between peaks
-
getSubset() - Extract subset of data points
-
get_exon_coords() - Get coordinates of exons
-
ggplot_by_sampling() - Plot by subsampling in each bin
-
jaccard() - Evaluate Jaccard index
-
makeImageRect() - Convert correlation matrix into triangle plot
-
plotClusterSegments() - Plot cluster segments
-
plotCompareCorr() - Plot two correlation matrices together
-
plotCorrDecay() - Plot correlation delay
-
plotCorrTriangle() - Plot triangle of correlation matrix
-
plotDecorate() - Plot decorate analysis
-
plotDensityPoints() - Plot density as color, add outlier points
-
plotEnsGenes() - Plot ENSEMBL genes
-
plotGenes() - Plot genes from a specified region of the human genome.
-
plotPairwiseScatter() - Scatter plot of all pairs of variables stratified by test variable
-
plotScatterPairs() - Scatter plot of all pairs of variables stratified by test variable
-
retainClusters() - Retain clusters by applying filter
-
runFastStat() - Test difference in correlation using closed form tests
-
runOrderedClustering() - Run hierarchical clustering preserving order
-
runOrderedClusteringGenome() - Run hierarchical clustering preserving order
-
runPermutedData() - Run hierarchical clustering permuting features
-
sLEDresults-class - An S4 class that stores results of sLED analysis
-
scoreClusters() - Compute scores for each cluster
-
sle.score() - Score impact of each sample on sparse leading eigen-value
-
sle.test() - Test association between sparse leading eigen-value and variable
-
`[`(<epiclustDiscreteListContain>,<ANY>,<ANY>,<ANY>) - Allow subsetting of epiclustDiscreteListContain
-
summary(<sLEDresults>) - Summarize sLED analysis
-
whichCluster() - Find which cluster a peak is in