Function reference
-
boxM()
- Box's M-test
-
boxM_fast()
- Box's M-test
-
boxM_permute()
- Box's M-test
-
collapseClusters()
- Collapse clusters based on jaccard index
-
combineResults()
- Combine results into a single data.frame
-
corSubsetPairs()
- Compute correlations between pairs of features
-
corrMatrix.test()
- Test difference between two correlation matricies
-
countClusters()
- Count clusters on each chromosome
-
createClusters()
- Create cluster from list of hclust objects
-
createCorrelationMatrix()
- Create correlation matrix
-
decorateData
decorateData
decorateData
- Simulated data to show correlation clustering
-
delaneau.score()
- Score impact of each sample on correlation sturucture
-
delaneau.test()
- Test association between correlation sturucture and variable
-
.evalDiffCorr()
- Internal .evalDiffCorr
-
epiclust-class
- Class epiclust
-
epiclustDiscreteList-class
- Class epiclustDiscreteList
-
epiclustDiscreteListContain-class
- Class epiclustDiscreteListContain
-
epiclustList-class
- Class epiclustList
-
evalDiffCorr()
- Evaluate Differential Correlation
-
evaluateCorrDecay()
- Evaluate the decay of correlation versus distance between features
-
extractCorrelationScores()
- Extract sample-level correlation scores
-
filterClusters()
- Extract subset of clusters
-
getClusterNames()
- Get name of each cluster
-
getClusterRanges()
- Get genome coordinates for each cluster
-
getFeaturesInCluster()
- Get feature names in selected cluster
-
getFeaturesInClusterList()
- Get feature names in selected cluster
-
getPeakDistances()
- Compute distance between peaks
-
getSubset()
- Extract subset of data points
-
get_exon_coords()
- Get coordinates of exons
-
ggplot_by_sampling()
- Plot by subsampling in each bin
-
jaccard()
- Evaluate Jaccard index
-
makeImageRect()
- Convert correlation matrix into triangle plot
-
plotClusterSegments()
- Plot cluster segments
-
plotCompareCorr()
- Plot two correlation matrices together
-
plotCorrDecay()
- Plot correlation delay
-
plotCorrTriangle()
- Plot triangle of correlation matrix
-
plotDecorate()
- Plot decorate analysis
-
plotDensityPoints()
- Plot density as color, add outlier points
-
plotEnsGenes()
- Plot ENSEMBL genes
-
plotGenes()
- Plot genes from a specified region of the human genome.
-
plotPairwiseScatter()
- Scatter plot of all pairs of variables stratified by test variable
-
plotScatterPairs()
- Scatter plot of all pairs of variables stratified by test variable
-
retainClusters()
- Retain clusters by applying filter
-
runFastStat()
- Test difference in correlation using closed form tests
-
runOrderedClustering()
- Run hierarchical clustering preserving order
-
runOrderedClusteringGenome()
- Run hierarchical clustering preserving order
-
runPermutedData()
- Run hierarchical clustering permuting features
-
sLEDresults-class
- An S4 class that stores results of sLED analysis
-
scoreClusters()
- Compute scores for each cluster
-
sle.score()
- Score impact of each sample on sparse leading eigen-value
-
sle.test()
- Test association between sparse leading eigen-value and variable
-
`[`(<epiclustDiscreteListContain>,<ANY>,<ANY>,<ANY>)
- Allow subsetting of epiclustDiscreteListContain
-
summary(<sLEDresults>)
- Summarize sLED analysis
-
whichCluster()
- Find which cluster a peak is in