Run hierarchical clustering permuting features to get statistics under the null
Arguments
- X
data matrix were *rows* are features in sequential order
- gr
GenomicRanges object with entries corresponding to the *rows* of X
- method
'adjclust': adjacency constrained clustering. 'hclustgeo': incorporate data correlation and distance in bp
- quiet
suppress messages
- alpha
use by 'hclustgeo': mixture parameter weighing correlations (alpha=0) versus chromosome distances (alpha=1)
- adjacentCount
used by 'adjclust': number of adjacent entries to compute correlation against
- setNANtoZero
replace NAN correlation values with a zero
- method.corr
Specify type of correlation: "pearson", "kendall", "spearman"
- meanClusterSize
select target mean cluster size. Can be an array of values
Examples
library(GenomicRanges)
# load data
data('decorateData')
# First, analysis of original data
# Evaluate hierarchical clustering
treeList = runOrderedClusteringGenome( simData, simLocation )
#>
Evaluating:chr20
#>
# Choose cutoffs and return clusters
treeListClusters = createClusters( treeList, method='meanClusterSize', meanClusterSize=c(5, 10) )
#> Method:meanClusterSize
# Evaluate score for each cluster
clstScore = scoreClusters(treeList, treeListClusters )
#> Evaluating strength of each cluster...
#>
#> Dividing work into 2 chunks...
# Then, analysis of permuted data
# Evaluate hierarchical clustering
res = runPermutedData( simData, simLocation, meanClusterSize=c(5, 10) )
#>
Evaluating:chr20
#>
#> Method:meanClusterSize
#> Evaluating strength of each cluster...
#>
#> Dividing work into 2 chunks...
# LEF values for permuted data at 5% false positive rate
res$cutoffs$LEF
#> [1] 0.10710201 0.07609162
# Retain clusters that pass this criteria
clustInclude = retainClusters( clstScore, "LEF", res$cutoffs$LEF )
#> Using cutoffs:
#> Cluster set cutoff
#> 5 0.107
#> 10 0.0761
#>