Skip to contents

Score impact of each sample on sparse leading eigen-value. Compute correlation using all samples (i.e. C), then compute correlation omitting sample i (i.e. Ci). The score the sample i is based on sparse leading eigen-value of the diffrence between C and Ci.

Usage

sle.score(
  Y,
  method = c("pearson", "kendall", "spearman"),
  rho = 0.05,
  sumabs = 1
)

Arguments

Y

data matrix with samples on rows and variables on columns

method

specify which correlation method: "pearson", "kendall" or "spearman"

rho

a positive constant such that cor(Y) + diag(rep(rho,p)) is positive definite.

sumabs

regularization paramter. Value of 1 gives no regularization, sumabs*sqrt(p) is the upperbound of the L_1 norm of v,controling the sparsity of solution. Must be between 1/sqrt(p) and 1.

Value

score for each sample measure impact on correlation structure

See also

sle.test

Examples

# load iris data
data(iris)

# Evalaute score on each sample
sle.score( iris[,1:4] )
#>            1            2            3            4            5            6 
#> 0.0100508501 0.0063532005 0.0040422346 0.0035951853 0.0132116072 0.0125309552 
#>            7            8            9           10           11           12 
#> 0.0100934398 0.0082490593 0.0114693323 0.0032052360 0.0122602163 0.0093574036 
#>           13           14           15           16           17           18 
#> 0.0070555663 0.0088254694 0.0184610609 0.0146444218 0.0144360540 0.0097520909 
#>           19           20           21           22           23           24 
#> 0.0118698471 0.0155046106 0.0061783969 0.0131563750 0.0169579645 0.0047634522 
#>           25           26           27           28           29           30 
#> 0.0090398155 0.0056904038 0.0077634331 0.0092150805 0.0069066487 0.0039830882 
#>           31           32           33           34           35           36 
#> 0.0031741402 0.0058447528 0.0203620157 0.0184108094 0.0030292459 0.0028027419 
#>           37           38           39           40           41           42 
#> 0.0089979730 0.0144614375 0.0076171795 0.0075813407 0.0105486832 0.0391144133 
#>           43           44           45           46           47           48 
#> 0.0043555698 0.0090955256 0.0139203037 0.0062276312 0.0159334491 0.0042216347 
#>           49           50           51           52           53           54 
#> 0.0124391046 0.0056051298 0.0062012259 0.0025538913 0.0027379404 0.0077974686 
#>           55           56           57           58           59           60 
#> 0.0031339724 0.0019131283 0.0048033019 0.0168761145 0.0026469713 0.0063139558 
#>           61           62           63           64           65           66 
#> 0.0270335216 0.0003607039 0.0095555803 0.0010817355 0.0011013864 0.0022526040 
#>           67           68           69           70           71           72 
#> 0.0022366774 0.0025516518 0.0041880468 0.0050152029 0.0037346124 0.0010691602 
#>           73           74           75           76           77           78 
#> 0.0050958706 0.0020457400 0.0017485637 0.0012400943 0.0048936187 0.0007369925 
#>           79           80           81           82           83           84 
#> 0.0009470987 0.0045808930 0.0076575464 0.0086515896 0.0011598561 0.0033769991 
#>           85           86           87           88           89           90 
#> 0.0040138952 0.0053708319 0.0017749569 0.0058275110 0.0010149180 0.0051076748 
#>           91           92           93           94           95           96 
#> 0.0044393934 0.0003113556 0.0017605131 0.0181676043 0.0023235321 0.0006398017 
#>           97           98           99          100          101          102 
#> 0.0009850551 0.0010481157 0.0118987312 0.0010920772 0.0139253836 0.0055572820 
#>          103          104          105          106          107          108 
#> 0.0026698326 0.0018311742 0.0016102118 0.0034648797 0.0183216541 0.0038243309 
#>          109          110          111          112          113          114 
#> 0.0112190900 0.0320116383 0.0054984010 0.0057990997 0.0022704649 0.0092346175 
#>          115          116          117          118          119          120 
#> 0.0089619798 0.0073418013 0.0012511391 0.0473107730 0.0183510194 0.0034704520 
#>          121          122          123          124          125          126 
#> 0.0093238498 0.0071416694 0.0081656016 0.0046067168 0.0110746046 0.0081178997 
#>          127          128          129          130          131          132 
#> 0.0028699817 0.0005083525 0.0043144966 0.0031497198 0.0071068499 0.0458246032 
#>          133          134          135          136          137          138 
#> 0.0042239870 0.0028311575 0.0055666365 0.0029206057 0.0157660466 0.0027558203 
#>          139          140          141          142          143          144 
#> 0.0009196381 0.0044974112 0.0052033499 0.0049786976 0.0055572820 0.0094222000 
#>          145          146          147          148          149          150 
#> 0.0132687311 0.0026642950 0.0071995856 0.0013516828 0.0141944453 0.0020270562