Skip to contents

Internal .evalDiffCorr

Usage

.evalDiffCorr(
  epiSignal,
  testVariable,
  gRanges,
  clustList,
  npermute = c(100, 10000, 1e+05),
  adj.beta = 0,
  rho = 0,
  sumabs.seq = 1,
  BPPARAM = bpparam(),
  method = c("sLED", "Box", "Box.permute", "Steiger.fisher", "Steiger", "Jennrich",
    "Factor", "Mann.Whitney", "Kruskal.Wallis", "Cai.max", "Chang.maxBoot", "LC.U",
    "WL.randProj", "Schott.Frob", "Delaneau", "deltaSLE"),
  method.corr = c("pearson", "kendall", "spearman")
)

Arguments

epiSignal

matrix or EList of epigentic signal. Rows are features and columns are samples

testVariable

factor indicating two subsets of the samples to compare

gRanges

GenomciRanges corresponding to the rows of epiSignal

clustList

list of cluster assignments

npermute

array of two entries with min and max number of permutations

adj.beta

parameter for sLED

rho

a large positive constant such that A(X)-A(Y)+diag(rep(rho,p)) is positive definite. Where p is the number of features

sumabs.seq

sparsity parameter

BPPARAM

parameters for parallel evaluation

method

"sLED", "Box", "Box.permute", "Steiger.fisher", "Steiger", "Jennrich", "Factor", "Mann.Whitney", "Kruskal.Wallis", "Cai.max", "Chang.maxBoot", "LC.U", "WL.randProj", "Schott.Frob", "Delaneau", "deltaSLE"

method.corr

Specify type of correlation: "pearson", "kendall", "spearman"

Value

list of result by chromosome and clustList