Package index
-
BIC(<MArrayLM>) - BIC from model fit
-
BIC(<MArrayLM2>) - BIC from model fit
-
ESS() - Effective sample size
-
MArrayLM2-class - Class MArrayLM2
-
VarParCIList-class - Class VarParCIList
-
VarParFitList-class - Class VarParFitList
-
applyQualityWeights() - Apply pre-specified sample weights
-
as.data.frame(<varPartResults>) - Convert to data.frame
-
as.matrix(<varPartResults>) - Convert to matrix
-
augmentPriorCount() - Augment observed read counts with prior count
-
calcVarPart() - Compute variance statistics
-
canCorPairs() - canCorPairs
-
classifyTestsF(<MArrayLM2>) - Multiple Testing Genewise Across Contrasts
-
classifyTestsF() - Multiple Testing Genewise Across Contrasts
-
colinearityScore() - Collinearity score
-
deviation() - Deviation from expectation for each observation
-
diffVar() - Test differential variance
-
dream() - Differential expression with linear mixed model
-
dscchisq() - Scaled chi-square
-
eBayes(<MArrayLM>) - eBayes for MArrayLM
-
eBayes(<MArrayLM2>) - eBayes for MArrayLM2
-
eBayes() - eBayes generic for for MArrayLM and MArrayLM2
-
extractVarPart() - Extract variance statistics
-
fitExtractVarPartModel() - Fit linear (mixed) model, report variance fractions
-
fitVarPartModel() - Fit linear (mixed) model
-
getContrast() - Extract contrast matrix for linear mixed model
-
getTreat() - Test if coefficient is different from a specified value
-
get_prediction() - Compute predicted value of formula for linear (mixed) model
-
ggColorHue() - Default colors for ggplot
-
hatvalues(<MArrayLM>)hatvalues(<MArrayLM2>) - Compute hatvalues
-
isRunableFormula() - Test if formula is full rank on this dataset
-
logLik(<MArrayLM>) - Log-likelihood from model fit
-
logLik(<MArrayLM2>) - Log-likelihood from model fit
-
makeContrastsDream() - Construct Matrix of Custom Contrasts
-
mvTest_input-class - Class mvTest_input
-
plotCompareP() - Compare p-values from two analyses
-
plotContrasts() - Plot representation of contrast matrix
-
plotCorrMatrix() - plotCorrMatrix
-
plotCorrStructure() - plotCorrStructure
-
plotPercentBars() - Bar plot of gene fractions
-
plotStratify() - plotStratify
-
plotStratifyBy() - plotStratifyBy
-
plotVarPart() - Violin plot of variance fractions
-
plotVarianceEstimates() - Plot Variance Estimates
-
rdf() - Residual degrees of freedom
-
rdf.merMod() - Approximate residual degrees of freedom
-
rdf_from_matrices() - Fast approximate residual degrees of freedom
-
reOnly() - Adapted from lme4:::reOnly
-
residuals(<MArrayLM>) - residuals for MArrayLM
-
residuals(<MArrayLM2>) - residuals for MArrayLM2
-
residuals(<VarParFitList>) - Residuals from model fit
-
residuals.MArrayLM2() - Residuals for result of dream
-
shrinkageMetric() - Shrinkage metric for eBayes
-
sortCols() - Sort variance partition statistics
-
topTable() - Table of Top Genes from Linear Model Fit
-
varParFrac-class - Class varParFrac
-
varPartConfInf() - Linear mixed model confidence intervals
-
varPartData - A simulated dataset of gene counts
-
varPartData - Simulation dataset for examples
-
varPartResults-class - Class varPartResults
-
vcov(<MArrayLM>) - Co-variance matrix for
dream()fit
-
vcov(<MArrayLM2>) - Co-variance matrix for
dream()fit
-
vcovSqrt() - Sqrt of co-variance matrix for
dream()fit
-
voomWithDreamWeights() - Transform RNA-Seq Data Ready for Linear Mixed Modelling with
dream()