Package index
-
autocorr.mat()
- Create auto-correlation matrix
-
cov_transform()
- Estimate covariance matrix after applying transformation
-
decorrelate()
- Decorrelation projection
-
dmult()
- Multiply by diagonal matrix
-
eclairs-class
- Class eclairs
-
eclairs()
- Estimate covariance/correlation with low rank and shrinkage
-
eclairs_corMat()
- Estimate covariance/correlation with low rank and shrinkage
-
eclairs_sq()
- Compute eclairs decomp of squared correlation matrix
-
fastcca-class
- Class fastcca
-
getShrinkageParams()
- Estimate shrinkage parameter by empirical Bayes
-
getWhiteningMatrix()
- Get whitening matrix
-
kappa(<eclairs>)
- Compute condition number
-
lm_each_eclairs()
- Fit linear model on each feature after decorrelating
-
lm_eclairs()
- Fit linear model after decorrelating
-
logDet()
- Evaluate the log determinant
-
mahalanobisDistance()
- Mahalanobis Distance
-
mult_eclairs()
- Multiply by eclairs matrix
-
optimal_SVHT_coef()
- Optimal Hard Threshold for Singular Values
-
plot(<eclairs>)
- Plot eclairs object
-
quadForm()
- Evaluate quadratic form
-
reform_decomp()
- Recompute eclairs after dropping features
-
rmvnorm_eclairs()
- Draw from multivariate normal and t distributions
-
averageCorr()
averageCorrSq()
sumInverseCorr()
effVariance()
tr()
- Summarize correlation matrix
-
sv_threshold()
- Singular value thresholding
-
whiten()
- Decorrelation projection + eclairs