Package index
-
autocorr.mat() - Create auto-correlation matrix
-
cov_transform() - Estimate covariance matrix after applying transformation
-
decorrelate() - Decorrelation projection
-
dmult() - Multiply by diagonal matrix
-
eclairs-class - Class eclairs
-
eclairs() - Estimate covariance/correlation with low rank and shrinkage
-
eclairs_corMat() - Estimate covariance/correlation with low rank and shrinkage
-
eclairs_sq() - Compute eclairs decomp of squared correlation matrix
-
fastcca-class - Class fastcca
-
getShrinkageParams() - Estimate shrinkage parameter by empirical Bayes
-
getWhiteningMatrix() - Get whitening matrix
-
kappa(<eclairs>) - Compute condition number
-
lm_each_eclairs() - Fit linear model on each feature after decorrelating
-
lm_eclairs() - Fit linear model after decorrelating
-
logDet() - Evaluate the log determinant
-
mahalanobisDistance() - Mahalanobis Distance
-
mult_eclairs() - Multiply by eclairs matrix
-
optimal_SVHT_coef() - Optimal Hard Threshold for Singular Values
-
plot(<eclairs>) - Plot eclairs object
-
quadForm() - Evaluate quadratic form
-
reform_decomp() - Recompute eclairs after dropping features
-
rmvnorm_eclairs() - Draw from multivariate normal and t distributions
-
averageCorr()averageCorrSq()sumInverseCorr()effVariance()tr() - Summarize correlation matrix
-
sv_threshold() - Singular value thresholding
-
whiten() - Decorrelation projection + eclairs