Skip to contents

All functions

autocorr.mat()
Create auto-correlation matrix
cov_transform()
Estimate covariance matrix after applying transformation
decorrelate()
Decorrelation projection
dmult()
Multiply by diagonal matrix
eclairs-class
Class eclairs
eclairs()
Estimate covariance/correlation with low rank and shrinkage
eclairs_corMat()
Estimate covariance/correlation with low rank and shrinkage
eclairs_sq()
Compute eclairs decomp of squared correlation matrix
fastcca-class
Class fastcca
getCov() getCor()
Get full covariance/correlation matrix from eclairs
getShrinkageParams()
Estimate shrinkage parameter by empirical Bayes
getWhiteningMatrix()
Get whitening matrix
kappa(<eclairs>)
Compute condition number
lm_each_eclairs()
Fit linear model on each feature after decorrelating
lm_eclairs()
Fit linear model after decorrelating
logDet()
Evaluate the log determinant
mahalanobisDistance()
Mahalanobis Distance
mult_eclairs()
Multiply by eclairs matrix
optimal_SVHT_coef()
Optimal Hard Threshold for Singular Values
plot(<eclairs>)
Plot eclairs object
quadForm()
Evaluate quadratic form
reform_decomp()
Recompute eclairs after dropping features
rmvnorm_eclairs()
Draw from multivariate normal and t distributions
averageCorr() averageCorrSq() sumInverseCorr() effVariance() tr()
Summarize correlation matrix
sv_threshold()
Singular value thresholding
whiten()
Decorrelation projection + eclairs