Efficient decorrelation projection using eclairs decomposition
Arguments
- X
matrix to be transformed so *columns* are independent
- ecl
estimate of covariance/correlation matrix from eclairs storing \(U\), \(d_1^2\), \(\lambda\) and \(\nu\)
- lambda
specify lambda and override value from
ecl
- transpose
logical, (default FALSE) indicating if X should be transposed first
- alpha
default = -1/2. Exponent of eigen-values
Details
Apply a decorrelation transform using the implicit covariance approach to avoid directly evaluating the covariance matrix
Examples
library(Rfast)
n <- 800 # number of samples
p <- 200 # number of features
# create correlation matrix
Sigma <- autocorr.mat(p, .9)
# draw data from correlation matrix Sigma
Y <- rmvnorm(n, rep(0, p), sigma = Sigma * 5.1, seed = 1)
# eclairs decomposition
ecl <- eclairs(Y)
# whitened Y
Y.transform <- decorrelate(Y, ecl)
#